TEORIA UNIFICADORA TENSORIAL G+ GRACELI

 TEORIA TENSORIAL G+ GRACELI , VISA UNIFICAR TODA A FÍSICA ATRAVÉS DO TENSOR G+ PARA CAMPOS [GRAVIDADE, ELETROMAGNETISMO, FORTE E FRACO] ONDE O ESSENCIAL É O TENSOR G+ DE CAMPOS E MOVIMENTOS, ENERGIA E ESTRUTURAS.


ENQUANTO NO SISTEMA SDCTIE GRACELI, O QUE SE TEM UM SISTEMA DE MAIS DE DUZENTAS DIMENSÕES COM SUAS VARIAÇÕES, E CATEGORIAS, ESTADOS FÍSICOS, QUÍMICO, FENOMÊNICOS E TRANSIÇÕES DE ESTRUTURAS, INTERAÇÕES E TRANSFORMAÇÕES, FORMANDO UM SISTEMA COM CINCO PILARES.




ENERGIA = ONDAS = GEOMETRIA CURVA = GRAVIDADE E OUTROS CAMPOS = MOMENTUM = FENÔMENOS = INTERAÇÕES = TRANSFORMAÇÕES = TEMPO = ESPAÇO

 



TEORIA GERAL DE GRACELI COM O TENSOR GRACELI = G + = TENSOR CURVATURA-ONDA-ENERGIA-CAMPOS GRACELI.

 TEORIA GERAL DE GRACELI COM O TENSOR GRACELI =  G +



ENERGIA = ONDAS = GEOMETRIA CURVA =  GRAVIDADE E OUTROS CAMPOS = MOMENTUM = FENÔMENOS = INTERAÇÕES = TRANSFORMAÇÕES = TEMPO = ESPAÇO



G + = GRAVIDADE E TENSOR CURVATURA-ONDA GRACELI. = RELAÇÃO DE CONTINUUM E UNICIDADE ENTRE ENERGIA, ONDAS, GEOMETRIA, E CAMPOS. = G + É MAIS ABRANGENTE E FORMA UMA UNICIDADE ENTRE A QUÂNTICA, RELATIVIDADES [GERAL E RESTRITA] GEOMETRIA, E TEORIA DE CAMPOS, ELETROQUÂNTICA, CORDAS, TEORIA M, E ELETROMAGNETISMO, E OUTRAS.




TENSOR CURVATURA-ONDA-ENERGIA-CAMPOS GRACELI. [CAMPOS: GRAVIDADE, ELETROMAGNETISMO, FORTE E FRACO].


RELAÇÃO DE CONTINUUM E UNICIDADE ENTRE ENERGIA, ONDAS, GEOMETRIA, E CAMPOS. = G +





CURVATURA-ONDA GRACELI NA GRAVIDADE, CAMPOS [ELETROMAGNÉTICO, FORTE FRACO, E NA QUÃNTICA].

 

CURVATURA-ONDA GRACELI.

TODA TEORIA QUÃNTICA ,E OUTROS RAMOS DA QUÃNTICA DEVE SER REESCRITA COM O TENSOR CURVATURA-ONDA DE GRACELI.

 

CURVATURA-ONDA  GRACELI.


SISTEMA FÍSICO GEOMÉTRICO QUE VARIA EM RELAÇÃO AO TEMPO, DE DENTRO PARA FORA NUM FLUXO DE COMEÇO-FIM CONTINUADO.


COM VARIAÇÕES NO ESPAÇO E TEMPO, MASSA E ENERGIA CONFORME O MOVIMENTO E A INTENSIDADE DA ONDA, FREQUÊNCIA E ALCANCE.


NUM CONTINUUM ESPAÇO-TEMPO-ENERGIA-MOMENTUM-MASSA-INTERAÇÕES E TRANSFORMAÇÕES.



COM EFEITO SOBRE GRAVIDADE, ELETROMAGNETISMO, E CAMPOS FORTE E FRACO.


OU SEJA, SE TEM UMA  RELAÇÃO ENTRE A QUÂNTICA DE CAMPOS E ONDAS, COM A RELATIVIDADE, E ONDE A RELATIVIDADE PASSA A SER ONDULATÓRIA. OBEDECENDO A CURVATURA ONDA PARTÍCULA DE GRACELI.




Great Animated Physics Waves Gifs at Best Animations Física Moderna, Formulas Matemática, Gerador De Energia, Truques De Matemática, Engenharia Mecânica, Papel De Parede De Fundo, Astronomia, Ilusões Legais, Ilusões De Óticas


G + = GRAVIDADE E TENSOR CURVATURA-ONDA GRACELI. = RELAÇÃO DE CONTINUUM E UNICIDADE ENTRE ENERGIA, ONDAS, GEOMETRIA, E CAMPOS. = G +

COM ALCANCE PARA CAMPOS ELETTROMAGNÉTICO, E FORTE E FRACO.


G + = O SÍMBOLO G NO SISTEMA DE TENSOR E CURVATURA-ONDA GRACELI TANTO É A GRAVIDADE QUANTO O PRÓPRIO TENSOR CURVATURA-ONDA GRACELI, FORMANDO UMA RELAÇÃO E CONTÍNUUM ENTRE A QUÂNTICA [TEORIA DE ONDAS] E A RELATIVIDADE GERAL, E VARIAÇÕES DO ESPAÇO E TEMPO DENTRO DO SISTEMA DE TENSOR CURVATURA-ONDA GRACELI.


----------------------------------------

G +





Uma força fundamental é um mecanismo pelo qual as partículas interagem mutuamente, e que não pode ser explicado por nenhuma força mais fundamental. Cada fenômeno físico observado, desde uma colisão de galáxias até quarks agitando-se dentro de um próton, pode ser explicado por estas interações. Devido a sua importância fundamental, a compreensão destas interações ocupou a atenção dos físicos por meio século e continua ocupando até hoje.

Interação nuclear forte.

Tradicionalmente, o físico moderno tem listado 4 interações: gravidadeeletromagnetismo, a força nuclear fraca, e a força forte. Suas magnitudes e comportamentos variam muito, como pode ser visto na tabela abaixo. Ainda, existe uma crença muito forte que 3 destas interações sejam a manifestação de uma única interação, mais fundamental, tal como a eletricidade e o magnetismo são agora entendidos como dois aspectos de uma interação eletromagnética. Eletromagnetismo e forças nucleares fracas têm se mostrado como dois aspectos da força eletrofraca. De forma mais especulativa, a força eletrofraca e a força nuclear forte podem vir a ser combinadas usando as teorias da grande unificação. Como combinar a quarta interação, a gravidade, com as outras três ainda é um tópico para a pesquisa em gravitação quântica.

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71.4 x 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito


-                                                ---------------------------------------

                        G +


Estas interações são algumas vezes chamadas de "forças fundamentais", embora muitos achem que esta terminologia seja enganosa porque uma delas, gravidade, não é totalmente explicada por uma "força" no sentido newtoniano: nenhuma "força gravitacional" está atuando à distância para levar um corpo a se acelerar (como era o que se acreditava até o século anterior com a teoria da gravitação newtoniana). Ao invés disto, a relatividade geral explicou a gravitação pela a curvatura do espaço-tempo (composta da dilatação gravitacional do tempo e da curvatura do espaço).

A visão da mecânica quântica moderna das três forças fundamentais (todas exceto a gravidade) é que as partículas da matéria (férminos) não se interagem mutuamente mas pela troca de partículas virtuais (bósons) chamadas de condutores de interação ou mediadores de interação. Esta dupla de matéria (férmions) com as partículas mediadoras (bósons) são entendidas como sendo resultado de alguma simetria fundamental da natureza.

As interações

Gravidade

Ver artigo principal: Gravidade

A gravidade é tida como a mais fraca das interações, mas esta é a interação que tem o mais longo alcance. O termo longo alcance refere-se tecnicamente ao decaimento da interação com a distância r a uma razão igual a 1/r2. Diferente de outras interações, a gravidade atua universalmente em toda matéria e energia. Devido ao seu longo alcance, e da propriedade de depender somente da massa dos objetos e independente de sua carga etc., a maioria das interações entre objetos separados por escala de distância maiores que de um planeta, por exemplo, são predominantemente devidas à gravidade.

Devido ao seu longo alcance, a gravidade é responsável por fenômenos de larga-escala como galáxias, buracos negros e a hipotética expansão do universo, como também os mais elementares fenômenos astronômicos como a órbita dos planetas, e a experiências do dia a dia com a queda de objetos.

A Gravitação foi o primeiro tipo de interação explicada por uma teoria matemática, Aristóteles teorizava que objetos de massas diferentes deveriam cair a velocidades diferentes. Durante a Revolução CientificaGalileo Galilei determinou experimentalmente que isto não era verdade – se a fricção devido ao ar fosse negligenciada todos objetos acelerariam em direção ao solo com a mesma razão. A Lei da Gravitação Universal de Isaac Newton (1687) foi uma boa aproximação do comportamento geral da gravidade. Em 1915Albert Einstein completou a Teoria Geral da Relatividade, uma descrição mais acurada da gravidade em termos da geometria do tempo-espaço.

Uma área de pesquisa atualmente ativa envolve a fusão da teoria da relatividade geral e mecânica quântica em uma teoria mais geral da gravitação quântica. É largamente aceito que em uma teoria da gravitação quântica, a gravidade seria mediada por uma partícula conhecida como gráviton. Grávitons são partículas hipotéticas que ainda não foram observadas.

Embora a teoria da relatividade geral represente atualmente uma apurada teoria da gravidade no limite não quântico, existem inúmeras teorias alternativas da gravidade. Aquelas sobre considerações sérias por toda comunidade científica diminuem a teoria geral da relatividade em algum limite, e o foco do trabalho observacional é estabelecer limites em que os desvios da relatividade geral são possíveis.

Força eletromagnética

Ver artigo principal: Força eletromagnética

A força eletromagnética é aquela que atua entre partículas carregadas. Estas incluem força eletrostática, atuando entre cargas em repouso, e o efeito combinado das forças elétrica e magnética entre cargas em movimento relativo.

Eletromagnetismo é uma interação de longo alcance que é relativamente forte, e além disto está presente na maioria de nossos fenômenos diários — uma gama de fenômenos que vão desde o laser e o rádio, à estrutura dos átomos e o arco-íris.

Fenômenos elétricos e magnéticos têm sido observado desde tempos antigos, mas somente em 1800 é que foi descoberto que eles eram dois aspectos de uma interação mais fundamental. Em 1864, através das equações de Maxwell pôde-se quantificar e unificar rigorosamente o fenômeno. Em 1905, a relatividade restrita resolveu a questão da constância da velocidade da luz, e Einstein explicou o efeito fotoelétrico pela teorização que a luz era transmitida em pacotes, denominados de "quanta", que agora denominamos de fótons. Por volta de 1927Paul Dirac unificou a mecânica quântica com a relatividade especial dando origem à Teoria Quântica de Campos; a teoria quântica de campos do eletromagnetismo é a eletrodinâmica quântica que foi completada na década de 1940s.

Theodor Kaluza em 1919 notou uma curiosa propriedade do eletromagnetismo, ou seja que a teoria clássica de Maxwell (não quântica) do eletromagnetismo surge naturalmente das equações relatividade geral com suposição que exista uma quarta dimensão extra do espaço. Esta propriedade é a base da teorias Kaluza-Klein a qual tem sido usada para formular a gravitação quântica.

Força fraca

Ver artigo principal: Força fraca

A força nuclear fraca é a responsável por alguns fenômenos na escala do núcleo atômico, tais como o decaimento beta.[1] O eletromagnetismo e a força nuclear fraca são teoricamente entendidos como dois aspectos de força eletrofraca unificada – este foi o primeiro passo na formulação teórica de um modelo conhecido como modelo padrão. Na teoria eletrofraca, os condutores da força fraca são bósons de calibre massivos chamados de bósons W e Z. A força fraca é um exemplo de uma teoria física em que a paridade não é conservada, mas a simetria CPT é conservada.

Força forte

Ver artigo principal: Força forte

Os núcleons são mantidos juntos no núcleo atômico pela força nuclear forte. Esta força não é relacionada à carga elétrica. Um dos principais efeitos desta força é a forte união dos dois prótons do núcleo do hélio, a despeito da sua tremenda repulsão eletromagnética.

A teoria quântica da força forte é conhecida como cromodinâmica quântica ou QCD. Em QCD, a força forte é mediada por partículas chamadas glúons e atua entre partículas que contém uma "carga de cor " (isto é, quarks e glúons). Partículas compostas tais como os nucleons ou mésons são construídas de quarks.

Desenvolvimentos atuais

modelo padrão é um modelo unificador da mecânica quântica —eletromagnetismo, interacções fracas e interacções fortes. Atualmente, não há um candidato aceito para a teoria da gravitação quântica. A busca por uma teoria aceitável da gravitação quântica , e uma teoria da grande unificação da mecânica quântica, são áreas importantes das pesquisas cientificas actuais. Até que estas pesquisas tenham sucesso, a interacção gravitacional não pode ser considerada uma força porque ela é mais de natureza geométrica do que dinâmica. Os movimentos das partículas são explicados porque a curvatura do espaço tempo direcciona este movimento, e não porque elas são puxadas ou empurradas por forças resultantes da troca de gravitons.

Um importante aspecto da mecânica quântica, contudo, são as diferentes formas de ver as coisas, tais como a gravidade. Uma forma de encarar a gravidade é como um campo de força, outra forma é como uma curvatura do espaço tempo e uma última forma é através da troca de grávitons. As equações podem ser rearranjadas para representar diferentes pontos de vista. Uma exótica quinta força tem sido proposta por alguns físicos de tempos em tempos. A maior parte destas explicações divergem entre predição e medição dos valores da constante gravitacional. Até o inicio de 2004, todos os experimentos que indicavam uma quinta força têm sido explicados em termos de erros experimentais. Entretanto, em 2016, um experimento de laboratório na Hungria detectou uma anomalia no decaimento radioativo.




Na física de partículas, a interação eletrofraca ou força eletrofraca é a descrição unificada de duas das quatro interações fundamentais conhecidas da natureza: o eletromagnetismo e a interação fraca. Embora essas duas forças pareçam muito diferentes nas baixas energias diárias, a teoria as modela como dois aspectos diferentes da mesma força. Acima da energia de unificação, da ordem de 246 GeV, elas se fundiriam em uma única força. Assim, se o universo estiver quente o suficiente (aproximadamente 1015 K, uma temperatura não ultrapassada desde logo após o Big Bang), então a força eletromagnética e a força fraca se fundirão em uma força eletrofraca combinada. Durante a Era Quark, a força eletrofraca se dividia em força eletromagnética e fraca.

Sheldon GlashowAbdus Salam,[1][2] e Steven Weinberg[3] foram agraciados com o Prêmio Nobel de Física de 1979 por suas contribuições para a unificação da interação fraca e eletromagnética entre partículas elementares, conhecida como teoria de Weinberg-Salam.[4][5] A existência de interações eletrofracas foi experimentalmente estabelecida em dois estágios, o primeiro sendo a descoberta de correntes neutras no espalhamento de neutrinos pela colaboração de Gargamelle em 1973, e o segundo em 1983 pelas colaborações UA1 e UA2 que envolveram a descoberta dos bósons de calibre W e Z em colisões próton-antipróton no acelerador Super Proton Synchrotron. Em 1999, Gerardus 't Hooft e Martinus Veltman receberam o prêmio Nobel por mostrar que a teoria eletrofraca é renormalizável.

História

Depois que o experimento de Wu descobriu a violação de paridade na interação fraca, uma busca começou por uma maneira de relacionar as interações fraca e eletromagnética. Estendendo o trabalho de seu orientador de doutorado Julian SchwingerSheldon Glashow primeiro experimentou introduzir duas simetrias diferentes, uma quiral e uma aquiral, e combinou-as de forma que sua simetria geral permanecesse ininterrupta. Isso não gerou uma teoria renormalizável e a simetria teve que ser quebrada à mão, pois nenhum mecanismo espontâneo era conhecido, mas previu uma nova partícula, o bóson Z. Isso recebeu pouca atenção, pois não correspondeu a nenhum achado experimental.

Em 1964, Salam e Weinberg tiveram a mesma ideia, mas previram um fóton sem massa e três bósons de calibre massivos com uma simetria quebrada manualmente. Mais tarde, por volta de 1967, ao investigar a quebra espontânea de simetria, Weinberg encontrou um conjunto de simetrias que previa um bóson de calibre neutro sem massa. Inicialmente rejeitando tal partícula como inútil, mais tarde ele percebeu que suas simetrias produziram a força eletrofraca, e ele passou a prever massas aproximadas para W e Z bósons . Significativamente, ele sugeriu que essa nova teoria era renormalizável.[3] Em 1971, Gerard 't Hooft provou que simetrias de calibre quebradas espontaneamente são renormalizáveis ​​mesmo com bósons de calibre massivos.

Formulação

O ângulo de mistura eletrofraca de Weinberg θ  e a relação entre as constantes de acoplamento g, g′ e e . Adaptado do livro de TD Lee, Particle Physics and Introduction to Field Theory (1981)
A distribuição de isospin fraco, , e hipercarga fraca, , das partículas elementares conhecidas, mostrando a carga elétrica, Q , ao longo do ângulo de mistura eletrofraca. O campo neutro de Higgs (no círculo) quebra a simetria eletrofraca e interage com outras partículas para dar-lhes massa. Três componentes do campo de Higgs tornam-se parte dos massivos bósons W e Z

Matematicamente, o eletromagnetismo é unificado com as interações fracas como um campo de Yang-Mills com um grupo de calibre SU(2) × U(1) , que descreve as operações formais que podem ser aplicadas aos campos de calibre eletrofracos sem alterar a dinâmica do sistema. Estes domínios são os campos de isospin fraco W1W2, e W3, e o campo de hipercarga fraca B. Essa invariância é conhecida como simetria eletrofraca.

Os geradores de SU(2) e U(1) recebem o nome de isospin fraco (chamado de T) e hipercarga fraca (chamada de Y), respectivamente. Estes então dão origem aos bósons de calibre que medeiam as interações eletrofracas - os três bósons W de isospin fraco W1W2, e W3 e o bóson B de hipercarga fraca, respectivamente, todos os quais são "inicialmente" sem massa. Esses ainda não são campos físicos, antes da quebra espontânea da simetria e do mecanismo de Higgs associado.

No modelo padrão, os bósons W± e Z0 e o fóton são produzidos por meio da quebra espontânea de simetria eletrofraca SU(2) × U(1)Y a U(1)em, efetuada pelo mecanismo de Higgs (ver também bóson de Higgs), um elaborado fenômeno teórico de campo quântico que "espontaneamente" altera a realização da simetria e reorganiza os graus de liberdade.[6][7][8][9]

A carga elétrica surge como uma combinação linear (não trivial) de Y (hipercarga fraca) e o componente T3 do isospin fraco () 

----------------------------------------

G +


que não se acopla ao bóson de Higgs - ou seja, o Higgs e o campo eletromagnético não têm efeito um sobre o outro no nível das forças fundamentais ("nível de árvore"), enquanto qualquer outra combinação linear da hipercarga e do isospin fraco irá interagir com o Higgs. Isso causa uma separação aparente entre a força fraca, que interage com o Higgs, e o eletromagnetismo, que não interage. Matematicamente, a carga elétrica é uma combinação específica da hipercarga e T3 delineada na figura.

U(1)em (o grupo de simetria do eletromagnetismo) é definido como o grupo gerado por esta combinação linear especial, e a simetria descrita por este grupo é ininterrupta, uma vez que não interage diretamente com o Higgs (mas o faz por meio de flutuações quânticas).

A quebra espontânea de simetria acima faz com que os bósons W3 e B se aglutinem em dois bósons físicos diferentes com massas diferentes - o bóson Z0 e o fóton (γ),


        ----------------------------------------

       G +


onde θW é o ângulo de mistura eletrofraca. Os eixos que representam as partículas, essencialmente apenas foram rodados no plano (W3B) pelo ângulo θW. Isso também introduz uma incompatibilidade entre as massas das partículas Z0
 e W±
 (denotadas como MZ e MW , respectivamente),

----------------------------------------

G +

Os bósons W1 e W2, por sua vez, combinam-se para produzir bósons massivos carregados

----------------------------------------

G +

Lagrangiano

Antes da quebra de simetria eletrofraca

Lagrangiano para as interações eletrofracas é dividido em quatro partes antes que a quebra de simetria eletrofraca se manifeste,

----------------------------------------

      G +

O termo  descreve a interação entre os três bósons vetoriais W e o bóson vetorial B,

,
----------------------------------------

     G +

onde  () e  são os tensores de intensidade de campo para os campos de calibre de isospin fraco e hipercarga fraca.

 é o termo cinético para o Modelo Padrão de férmions. A interação entre os bósons de calibre e os férmions se dão pela derivade covariante de calibre,

,
                  ----------------------------------------

          G +

onde o subscrito i percorre as três gerações de férmions; Q, u e d são os campos de quarks correspondendo ao dubleto levógiro, singleto dextrógiro up, e singleto dextrógiro down; e L e e são os campos de elétrons do dubleto levógiro e singleto dextrógiro. A barra de Feynman  significa a contração do quadri-gradiente com as matrizes de Dirac

----------------------------------------

G +

e a derivada covariante é (excluindo o campo de calibre do glúon para a interação forte)

   ----------------------------------------

     G +

Aqui  é a hipercarga fracais e  são os componentes do isospin fraco.

O termo  descreve o campo de Higgs e suas interações consigo mesmo e com os bósons de calibre,

    ----------------------------------------

      G +

O termo  descreve a interação de Yukawa com os férmions,

-                  ---------------------------------------

            G +

e gera suas massas, manifestas quando o campo de Higgs adquire um valor esperado do vácuo diferente de zero, discutido a seguir.

Depois da quebra de simetria eletrofraca

O Lagrangiano se reorganiza à medida que o bóson de Higgs adquire um valor esperado do vácuo diferente do zero, ditado pelo potencial da seção anterior. Como resultado dessa reescrita, a quebra de simetria se torna manifesta. Na história do universo, acredita-se que isso tenha acontecido logo após o big bang quente, quando o universo estava a uma temperatura de 159,5±1,5 GeV[10] (assumindo o Modelo Padrão da física de partículas).

Devido à sua complexidade, este Lagrangiano é melhor descrito dividindo-o em várias partes como segue.

          ----------------------------------------

       G +  

O termo cinético  contém todos os termos quadráticos da Lagrangiana, que incluem os termos dinâmicos (as derivadas parciais) e os termos de massa (visivelmente ausentes da Lagrangiana antes da quebra de simetria)

                                               ----------------------------------------

                 G +

onde a soma percorre todos os férmions da teoria (quarks e léptons), e os campos , and  são dados como

-        ---------------------------------------

       G +

com ‘’ a ser substituído pelo campo relevante (), e abc pelas constantes de estrutura do grupo de calibres apropriado.

As componentes do Lagrangiano para a corrente neutra  e para a corrente carregada  contêm as interações entre os férmions e os bósons de calibre,

----------------------------------------

       G +

onde  A corrente eletromagnética  é

,
----------------------------------------

G +

onde  são as cargas elétricas dos férmions. A corrente neutra fraca  é

----------------------------------------

G +

onde  é o isospin fraco dos férmions.

A parte da corrente carregada da Lagrangiana é dada por

-                            ---------------------------------------

              G +

onde  contém os termos de auto interação de três e quatro pontos de Higgs,

-         ---------------------------------------

       G +

 contém as interações de Higgs com os bósons vetoriais de calibre,


-                    ---------------------------------------

            G +

 contém as auto interações de três pontos de calibre,

 contém as auto interações de quatro pontos de calibre,

 contém as interações Yukawa entre os férmions e o campo de Higgs,

----------------------------------------

      G +

Note os fatores  nos acoplamentos fracos: esses fatores projetam os componentes levógiros dos campos de spinor. É por isso que se diz que a teoria eletrofraca é uma teoria quiral.








Na físicaforça forte é a interação entre quarks e glúons descrita pela cromodinâmica quântica. Antigamente, era entendida como a força nuclear, que ocorria entre prótons e nêutrons, até então considerados indivisíveis. Sempre foi classificada como uma interação fundamental da natureza.

A força nuclear forte é uma das quatro forças fundamentais da natureza. É também a mais forte, embora tenha um curtíssimo raio de ação de aproximadamente 10-14 metros[1] (ou 0,0001 Å ; 1 angstrom= 10-10 metros). O trabalho pioneiro sobre as forças fortes foi realizado pelo físico japonês Yukawa[2] em 1935, mas até meados da década de 1970 não havia uma teoria capaz de explicar os fenômenos nucleares. Foi então que surgiu a cromodinâmica quântica, a teoria que explica os fenômenos que ocorrem no interior do núcleo atômico. As outras forças fundamentais são força nuclear fracaforça eletromagnética e a força gravitacional.

História

Antes da década de 1970, os físicos estavam incertos acerca do mecanismo de ligação do núcleo atômico. Era claro que ele era formado por prótons e nêutrons, e que o próton tinha carga elétrica e o nêutron era eletricamente neutro. Pela compreensão física da época, os prótons deveriam se repelir e fazer o átomo decair rapidamente, mas isso não acontecia, era necessária uma nova teoria da física.

A Força Forte foi postulada[2] para explicar como o núcleo atômico continua unido apesar da mútua repulsão eletromagnética dos prótons. Essa era a hipótese da Força Forte, uma força fundamental que atuava nos nucléons (os prótons e nêutrons). Experimentos mostram que isso força os núcleons a ficarem juntos mesmo com a repulsão eletromagnética dos prótons (a Força Forte é cem vezes mais forte que a eletromagnética).

Então foi descoberto que os prótons e nêutrons não eram as partículas fundamentais, e que eram formados de quarks, e que a atração entre nucléons era efeito colateral do que ocorria dentro deles, fazendo os quarks ficarem unidos. A teoria da cromodinâmica quântica, e que os quarks transportavam o que era chamado carga de cor, embora não tenha nenhuma relação com a luz visível, quarks com cor diferentes se atraem como resultado da forte interação que é mediada por partículas chamadas de glúons.

Detalhes

Calcula-se que, dentro do núcleo, a proporção entre as forças nucleares, elétricas e gravitacionais seja de 1: 10-3 :10-39, respectivamente.[1]

Comportamento da força forte

A interação de quarks de um nêutron deve-se à força forte.

----------------------------------------

      G +

A forte força contemporânea é descrita pela cromodinâmica quântica (sigla QCD, em inglês), sendo parte do modelo padrão da física de partículas. Matematicamente, a QCD é uma teoria de calibre não abeliana, com base em um calibre (local) de grupo de simetria chamado SU (3).

Os quarks e glúons são as únicas partículas que não têm o desaparecimento da carga e cor, podendo então participarem da forte interação, sendo que esta atua diretamente nestes.

A força forte, ao contrário das outras forças fundamentais da natureza (eletromagnética, fraca e gravidade) não fica menos poderosa com a distância de seu alcance (que é do tamanho de um hádron), a sua força de atuação é de cerca de 10000 N, em QCD isto é chamado confinamento da cor, mas implica que somente hádrons e não quarks individuais podem ser observados. A explicação é que a quantidade de trabalho realizado contra uma força de 10 000 newtons (sobre o peso de uma tonelada métrica de massa sobre a superfície da Terra) é o suficiente para criar novas partículas pelo choque entre elas. Em termos simples a própria energia aplicada para puxar dois quarks separados irá gerar um novo par de quarks. O fracasso em observar quarks livres é uma evidência desse fenômeno.




Comentários

Postagens mais visitadas deste blog